Paleomagnetic Research on Icelandic Rocks 1951–81
Additional notes and references

LEÓ KRISTJÁNSSON
Science Institute, University of Iceland
Dunhaga 3, Reykjavík, Iceland.

- De nouveaux échantillons seront nécessaires avant toute généralisation. (Chevallier 1930b).

A bibliographical review paper on paleo- and rock magnetic research in Iceland appeared in a previous volume of Jökull (Kristjánsson 1982).

Since that paper was written, however, some further references on this topic have come to my attention.

Historically the most interesting point to come to light concerns the oldest published work on paleomagnetic laboratory studies of Icelandic rocks. In my previous paper I had assumed that these were P. L. Mercanton’s studies on samples collected during the 1929 cruise of Pourquoi-Pas?, published in 1931–32.

Mercanton, undoubtedly one of the foremost pioneers of paleomagnetic research, was a meteorologist of Swiss nationality, who also worked on glaciology and other subjects. He was associated with expeditions to the Arctic already by 1910, and during one of these he and two British colleagues were the first people on record to climb Mt. Beerenberg of Jan Mayen. This feat took place on 11 Aug 1921, and is reported in Comptes Rendus 174 (1922) p. 1479–81. Mercanton’s accomplishments are referred to in a 1947 booklet written by a Reykjavík merchant lady, Thora Fridriksson, in memory of Commander J.-B. Charcot and his expeditions to Iceland. Mercanton describes some of his magnetic field measurements and paleomagnetic sampling localities in Iceland in Ann. Hydrogr. vol. 11 (3rd ser.) 1931–32, p. 135–139.

Another scientist also pioneering in paleomagnetism in the first half of the century was the French physicist R. Chevallier. He is best known for his studies on Etna lava flows around 1925 and for his later work on the magnetic properties of various iron minerals.

In 1930, Chevallier read a paper to the Académie des Sciences and to the Nancy chapter of the Société Francaise de Physique (Chevallier 1930a), describing the remanence of four samples from the presumably 1000 A. D. lava Thur-áhraun, east of Reykjavík. These were collected during the 1925 Pourquoi-Pas? cruise; cf. Chevallier’s description in Ann. Hydrogr. vol. 7, 1926, p. 216–221. In a subsequent publication (Chevallier 1930b) he observes that the mean N. R. M. inclination of these samples is rather low (+71°), but states that this may be related to the high intensity of remanence of the samples as com-

Fig. 1. „Pourquoi pas?“